
How to Use the TIGERs Firmware

This How-To will show you the required steps to setup your IDE,

compile the TIGERs source code for the robot and our base station,

and to debug it.

System Requirements

Any windows or linux machine can be used. We tested Windows 7 x64,

Windows 8.1 x64, and Arch Linux.

IDE Setup

We use the Eclipse CDT environment for development. The instructions have been tested with

Eclipse Kepler and Eclipse Luna (Luna had some problems with pausing and resuming debugging

sessions, at least on Windows).

Download Eclipse CDT for your platform: Luna CDT1.

Unpack the CDT and start Eclipse

Select a workspace. It should not contain any whitespaces!a.

2.

Install the GNU ARM Eclipse plug-in

In Eclipse select: Help => Install New Software...a.

In the "Work with" field enter: http://gnuarmeclipse.sourceforge.net/updates and hit

enter

b.

Select at least the packages labeled "GNU ARM C/C++ Cross Compiler Support" and

"GNU ARM OpenOCD Debugging Support"

c.

Click next, accept the licence, click finish. During the installation confirm the

installation of unsigned content

d.

Restart Eclipse when promptede.

3.

ARM Toolchain

The ARM Toolchain contains the compiler, linker and debugger for the embedded

microcontrollers. The recommended and tested version is GCC 4.8.

Download the appropriate toolchain for your platform (I recommend the zip or tar.bz

variant). There are two options:

The GNU ARM Embedded project.a.

Freddie Choppins Bleeding Edge Toolchainb.

1.

Unpack the toolchain to a location of your choice. Again, avoid whitespaces.2.

OpenOCD

OpenOCD is used as a debugging interface for embedded platforms. It forms the connection

between GBD and the hardware. The tested version is 0.8.0.

We are currently supporting two different JTAG adapters for debugging:

oocdlink: Little blue adapter with text "IN-CIRCUIT" on the back, mini-USB connector. No

longer available for purchase.

1.

olimex: Olimex ARM-USB-TINY-H, grey adapter with normal USB type B connector2.

Installation:

For windows:

Freddie Choppin provides some pre-built binaries for Windows of the most recent

OpenOCD release

a.

Download it here.b.

Unpack the content to a folder of your choicec.

1.

Table of Contents

System Requirements

IDE Setup

ARM Toolchain

OpenOCD

Import from Archive

Import from GIT

Project configuration

Configure Toolchain

Configure OpenOCD

Compiling

Flashing

Debugging

Roboter/HowToFirmware – Tigers Mannheim http://tigers-mannheim.de/trac/wiki/Roboter/HowToFirmware

1 von 4 24.07.2014 14:12



To use the debugging hardware the WinUSB driver is requiredd.

This is most easily installed with Zadig's tool found here: http://zadig.akeo.ie/,

download it and start it while your adapter is plugged in

e.

Select: Options => List All Devicesf.

In the drop-down list select the correct device. E.g. for oocdlink this is "Dual RS232

(Interface 0)"

g.

Select the WinUSB driver and click "Replace driver", confirm the installationh.

Close the tool, Done!i.

For Linux:

You can check your package manager, but it will most likely provide a version <0.8.0

or is not compiled with ftdi support, so you might want to compile it yourself.

a.

You can use this link as reference: http://www.elinux.org

/Compiling_OpenOCD_v06_Linux

b.

Here is the short version (but you may need additional libs from package manager):

git clone git://git.code.sf.net/p/openocd/code openocd

cd openocd

./bootstrap

./configure --enable-ftdi

make

sudo make install

c.

The binary will be installed to /usr/local/bin/, you can use this path later on in this

HowTo.

d.

To run OpenOCD you usually require super user rights. Instructions on how to avoid

this can be found here: http://elinux.org/Accessing_Devices_without_Sudo

e.

2.

Project Setup and Usage

The firmware project contains all the code for our base station (BS) and for our robot (MB).

There are different build configurations to select what to build.

For each processor there is one folder below the "app" folder and a separate project. The base

station has only one processor, called "bs". The robot mainboard uses 5 microcontrollers. They

are called main, media, kd and mot (left/right). More information on how they are

interconnected can be found in our 2014 TDP.

A separate project for each processor is required to make the Eclipse Indexer as happy as

possible. Otherwise it would complain about multiple defines in the different processor include

paths.

Furthermore, each processor has a custom bootloader. Therefore, the flash programming area

has been divided into two parts. This allows the robot to be reprogrammed via our wireless

interface. Although the base station also has a bootloader, this feature is currently not used.

Import from Archive

If you are using our public software release you should have a .zip archive containig the project.

In Eclipse select: File => Import...1.

Under "General" select "Existing Project Into Workspace", hit Next2.

Choose "Select archive file" and browse to the downloaded archive3.

In the "Projects:" box deselect all projects except the one labeled "Firmware"4.

Click finish5.

Once again, in Eclipse select: File => Import...6.

Under "General" select "Existing Project Into Workspace", hit Next7.

Choose "Select root directory" and browse to the location of the Firmware project on your

disk

8.

Check "Search for nested projects" and uncheck "Copy projects into Workspace"9.

Select all nested projects (bs, kd, main, media, mot) and click Finish10.

Import from GIT

Roboter/HowToFirmware – Tigers Mannheim http://tigers-mannheim.de/trac/wiki/Roboter/HowToFirmware

2 von 4 24.07.2014 14:12



If you are a member of the TIGERs team you can import the latest version from our GIT

repository.

In Eclipse select: File => Import...1.

Under "GIT" select "Projects from Git", hit Next2.

Select "Clone URI", hit Next3.

The URI is: http://tigers-mannheim.de/git/Firmware.git4.

Enter your username and password under "Authentication", click Next5.

Select at least the master branch, others are optional, click Next6.

Select a local directoy for the project, click Next7.

Wait for the download to finish and then select "Import existing projects", click Next8.

Select all projects and click "Finish"9.

Project configuration

Configure Toolchain

Right click on the Firmware project and select "Properties"1.

Select: C/C++ Build => Settings2.

In the Toolchains tab go down to "Global Path" and browse to the root folder of your ARM

Toolchain installation path

3.

Click Apply and OK4.

Configure OpenOCD

Open: Window => Preferences1.

Go to: Run/Debug => String substitution2.

Edit the openocd_executable variable and enter the absolute path to the OpenOCD binary

(e.g. E:\Coding\Tools\openocd-0.8.0\bin\openocd-0.8.0.exe). Ignore the openocd_path

variable.

3.

Click "New..." and enter a new variable:

Name: openocd_adaptera.

Value: oocdlink or olimex (the value depends on the programmer your have)b.

Click OKc.

4.

Click OK and close the window5.

Compiling

Right click on the Firmware project and go to: Build Configurations => Set Active1.

There are four configurations, for the Mainboard (MB, thats the robot hardware) and for

the Base Station (BS). Both in a debug and a release build.

2.

Choose the one you wish to build3.

Right click on the project and select Build Project4.

You can also select the build configuration and the build command in the toolbar. It is the

small hammer symbol and the symbol left of it. Make sure you select the Firmware project

before using the buttons.

5.

Building the project via the build command always compiles the bootloader and the run

code. You may select a more fine grained control by using the configured make targets. If

the "Make Target" view is not open, select it via Window => Show View. The make targets

can be found in the Firmware folder.

6.

Flashing

Flashing of all processors is possible via an "External Tool Configuration"1.

Go to: Run => External Tools => External Tools Configuration2.

There are four entries for flashing the base station or the mainboard (each with bootloader

and run configuration)

3.

Just select the desired configuration and hit Run (requires OpenOCD to be setup correctly)4.

If there is no code on the processors you will need to flash the bootloader first5.

Roboter/HowToFirmware – Tigers Mannheim http://tigers-mannheim.de/trac/wiki/Roboter/HowToFirmware

3 von 4 24.07.2014 14:12



Last modified on 07/16/14 14:47:12

This can also be selected in the toolbar (green arrow with toolbox symbol)6.

Debugging

Each processor can be debugged individually

Go to: Run => Debug Configurations...1.

You can find all configurations already set up under the "GDB OpenOCD Debugging" node2.

Select the processor and mode (bootloader/run) you wish to debug and click "Debug"

(requires OpenOCD to be setup correctly)

3.

The appropriate debug build image will automatically be loaded onto the corresponding

processor

4.

Happy debugging!5.

Roboter/HowToFirmware – Tigers Mannheim http://tigers-mannheim.de/trac/wiki/Roboter/HowToFirmware

4 von 4 24.07.2014 14:12


